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Abstract

This work presents a comprehensive eval-
uation of various approaches for classi-
fying pneumonia from chest X-ray im-
ages, emphasizing both traditional ma-
chine learning and deep learning methods.

A detailed cross-dataset analysis was con-
ducted to assess the generalizability and
robustness of these approaches across dif-
ferent datasets, a crucial aspect in medi-
cal image analysis. The inclusion of cross-
dataset evaluations highlights the models’
ability to adapt to varying data distribu-
tions, ensuring their applicability in real-
world clinical scenarios. This study pro-
vides valuable insights into the strengths
and limitations of both traditional and
deep learning methods, guiding the devel-
opment of more reliable Al-driven diag-
nostic tools for pneumonia detection.

1 Introduction

In recent years, the combination of technology
and medicine has revolutionised the diagnosis and
treatment of many diseases. Pneumonia, the lead-
ing cause of infectious death among children un-
der five, caused more than 800,000 deaths in 2017,
accounting for 15% of global child mortality (1).
The most affected regions are South Asia and sub-
Saharan Africa. Prevention and early diagnosis are
crucial to significantly reduce fatalities, especially
in resource-limited settings where access to vac-
cines and treatment is often insufficient.

Advanced machine learning methods in medi-
cal image analysis hold great promise for improv-
ing disease diagnosis, including pneumonia. How-
ever, addressing challenges in standardization and
adapting these technologies to diverse clinical set-
tings remains critical for their widespread adop-
tion and effectiveness.
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2 Related Work

In recent years, computer-aided diagnosis has rev-
olutionised medical image analysis. Initially, tra-
ditional machine learning methods were based on
manually extracted features such as histograms
and pixel variations, but the advancement of deep
neural networks has enabled significantly better
results.

Deep learning-based techniques, particularly
convolutional networks (CNNs), have demon-
strated superior capabilities in identifying and
classifying affected regions. For example, re-
cent studies presented models capable of detecting
anomalies with high accuracy, often outperform-
ing human experts (2)).

A 2024 systematic review highlights how these
approaches have improved efficiency and diagnos-
tic accuracy, discussing advantages and limitations
of existing methodologies and proposing future
directions, such as the integration of multimodal
models to combine clinical and imaging data (3)).
However, challenges remain, such as model ex-
plainability and handling bias in datasets, which
affect reliability in clinical applications.

3 Proposed method

The study investigates cross-domain generaliza-
tion in the context of diagnosing pneumonia from
chest X-ray images. Specifically, the analysis fo-
cuses on evaluating whether models trained on a
particular dataset can generalize effectively to un-
seen datasets, a critical challenge in medical imag-
ing where data distribution shifts are common. To
this end, various machine learning and deep learn-
ing architectures were employed.

Each model was trained on one dataset desig-
nated as the training set and subsequently tested on
distinct, unseen datasets to assess its cross-domain
generalization capabilities.

Model performance was benchmarked using a



comprehensive suite of evaluation metrics, includ-
ing accuracy, precision, recall, F1-score, and the
area under the Receiver Operating Characteris-
tic curve (ROC_AUC). These metrics were se-
lected to provide a holistic understanding of each
model’s classification performance across differ-
ent aspects.

4 Models

4.1 Traditional models

The models employed in this study include K-
Nearest Neighbors (KNN) (4), Support Vector
Machines (SVM) (5), Binary Decision Trees (6),
and Logistic Regression (7).

To ensure robust and consistent preprocessing
across models, we implemented a pipeline com-
prising random undersampling to address class
imbalance, standard scaling for feature normal-
ization, and Principal Component Analysis (8))
for dimensionality reduction. Hyperparameter
optimization was performed using a randomized
search strategy with k-fold cross-validation(9),
aiming at maximizing the precision.

42 CNN

We used a simple convolutional neural network
(CNN), with the architecture described in (10).
Hyperparameter optimization was performed us-
ing Weight&Biase with Sweeps, selecting the
best configuration from 24 different models (Fig.
1.

The final architecture consists of six blocks,
each with a 2D convolutional layer (kernel size
3x3) followed by a max-pooling layer (pool size
2x2). The number of filters increases progres-
sively, with sizes 3, 6, 9, 12, 15, and 16 in the final
block. ReLU activation is applied to all convolu-
tional layers. The output is flattened and passed
through two dense layers (64 neurons each) with
ReLU activation. The model was trained for 50
epochs using the Adam optimizer (learning rate
0.0001), a batch size of 64, and a dropout rate
of 0.4. The loss function used was the weighted
cross-entropy loss.

To enhance generalization to unseen data, aug-
mentation techniques were employed during train-
ing.

"Weight&Biases site: https://wandb.ai/site/

Figure 1: Weight&Biases - CNN

4.3 ResNet50

As transfer learning is a good strategy for the
analysis of medical images (11)), we decided to
use the ResNet50 architecture pre-trained on the
ImageNet-1K dataset (12). ResNet50 is a deep
convolutional neural network characterized by its
residual blocks (13), which allow the model to
train very deep architectures without the gradi-
ent vanishing problem that typically occurs in tra-
ditional deep networks. These residual connec-
tions help to propagate gradients through the net-
work more effectively, making it possible to train
very deep models and achieving remarkable per-
formance on a variety of tasks, including image
classification.

The pre-trained ResNet-50 model has been
adapted, replacing the original output layer with
a custom linear layer that produces two output
units, corresponding to the two classes in our bi-
nary classification problem: positive or negative to
pneumonia. This modification enables the model
to output class probabilities for pneumonia detec-
tion based on the learned features from the pre-
trained model. Furthermore, we froze the model
parameters up to the ’Stage 3 block (highlighted
in red in Figure2)).

The fine-tuning process involved training the
modified model on the target datasets using the
cross-entropy loss function, with a learning rate of
0.0001 and L2 regularization (penalty of 0.0001)
to prevent overfitting. To address the issue of class
imbalance, class weights were incorporated into
the loss function, giving more importance to the
minority class. This adjustment helps the model
better learn from the underrepresented class, im-
proving its overall performance in imbalanced
classification tasks. Data augmentation techniques
were employed during training.


https://wandb.ai/site/

Figure 2: Architecture of ResNet-50

5 Datasets

In order to assess the generalization capabilities
of the models, three distinct publicly available
datasets were selected for this study. Each of these
datasets offers unique characteristics in terms of
size, label annotations, and image quality, mak-
ing them suitable for evaluating the performance
of machine learning models in the context of pneu-
monia detection. The following sections provide a
detailed description of each dataset, highlighting
their key features and the challenges they present
for model training and evaluation.

5.1 Chest X-Ray Images (Pneumonia)

This dataset, available on Kaggle (14), contains
a total of 5,863 chest X-ray images, divided into
two categories: normal (healthy individuals) and
pneumonia (patients affected by pneumonia). The
dataset is imbalanced, with 74% of the images la-
beled as pneumonia, and the remaining 26% la-
beled as normal.

The dataset is originally split into three subsets:
train, test (624 images), and validation (16 im-
ages). However, we found this splitting to be in-
sufficient for our purposes, and thus, we chose to
re-split the data using an 80%/20% ratio for train-
ing/validation and testing.

5.2 CheXpert

CheXpert (Irvin et al., 2019 (15)) is a large-
scale dataset containing 224,316 chest X-ray im-
ages from 65,240 different patients. The dataset
includes x-ray images from different perspective
(frontal and lateral) and both AP and PA projec-
tions. The image label’s are NLP-predicted, with
the custom chexpert-labeler, based on the Neg-

Bio (16) labeler. Images includes labels for dif-
ferent medical conditions, including enlarged car-
diomediasintum, cardiomegaly, lung opacity, lung
lesion, and pneumonia. Additionally, each label
can have four possible values:

* Empty label (no reference to the condition),
* 1 (confidently present),
* 0 (confidently absent),

* -1 (uncertainly present, when reports are am-
biguous).

For the purpose of pneumonia detection, we fil-
tered the dataset to include only the images labeled
for pneumonia. In cases where the label for pneu-
monia was not defined, we considered images with
the label for lung opacity defined as negative for
pneumonia if the value of lung opacity was 0. This
is possible as pneumonia implies lung opacity. In
the end, we ended up having 12,509 usable im-
ages, with 6,039 images labelled as positive.

Note: Images labeled as “negative” do not nec-
essarily correspond to healthy individuals. Rather,
they represent patients who are not affected by
pneumonia. Therefore, while the “negative” im-
ages are used as non-pneumonia cases, they may
still exhibit other health anomalies.

5.3 RSNA Pneumonia Detection Challenge

The RSNA Pneumonia Detection Challenge
dataset (17) is part of a collaboration between the
Radiological Society of North America (RSNA),
the US National Institutes of Health (NIH), and
other organizations, aimed at advancing the auto-
mated detection of pneumonia from chest X-ray
images. This dataset contains 30,227 images, di-
vided into two categories: positive (9,555 images)
and negative (20,672 images).

Each image was hand-labeled by a single radi-
ologist, with annotations for the presence of lung
opacity, which is considered a primary indicator
for pneumonia. The dataset aims to foster the
development of machine learning models for the
early detection of pneumonia, with the goal of au-
tomating initial screening processes to prioritize
and expedite the review of potential pneumonia
cases.

6 Experimental Results

The analysis focuses on comparing the perfor-
mance of traditional machine learning models and



deep learning architectures for the task of pneu-
monia detection, both in intra-dataset and cross-
dataset evaluations. Below, we highlight the key
findings:

6.1 Performance Metrics

The models were evaluated using standard clas-
sification metrics, including Accuracy, Precision,
Recall, F1-score, and ROC_AUC. The deep learn-
ing architectures outperformed traditional models
in every scenario. The ResNet50 models consis-
tently demonstrated the highest scores. We can
clearly observe this behavior in Figures 6l
and[8

In the figures, the left bar represents, for each
architecture and each metric, the average scores
obtained in the intra-dataset scenario, where the
models were tested on the test split of the dataset
used during training. The right bar represents the
average scores obtained in the cross-dataset sce-
nario, where the models were tested exclusively on
datasets different from the ones seen during train-
ing. Furthermore, scores were also compared with
those obtained from a Dummy Classifier, used as
a baseline. This classifier always predicts the ma-
jority class, making it a simple yet important ref-
erence for evaluating the effectiveness of the mod-
els. The comparison with this baseline is useful
to highlight whether the models are indeed learn-
ing meaningful patterns in the data, as opposed
to simply memorizing the dominant class distribu-
tion, which is important when dealing with class
imbalance.

The results of our best architecture are compa-
rable with the ones achieved by a related research
(18).

6.2 Intra-Dataset vs Cross-Dataset
Generalization

Traditional machine learning models, such as
Logistic Regression, Decision Tree, and KNN,
demonstrated overall lower performance com-
pared to deep learning networks in both intra-
dataset and cross-dataset evaluations. However, an
interesting observation was that the gap between
intra-dataset and cross-dataset performance was
smaller on KNN and Logistic Regression, if com-
pared with deep learning models. This suggests
that while these models struggled to achieve high
absolute performance, their simpler feature repre-
sentations were less sensitive to domain shifts be-
tween datasets.

Regarding deep learning models, ResNet50 sig-
nificantly outperformed the basic CNN in every
scenario, showing that being pretrained on large
datasets like ImageNet provides a strong advan-
tage by enabling the model to extract more general
and robust features.

6.3 Dataset Characteristics and Model
Performance

The variability in dataset characteristics, such
as the labeling methods and class imbalance,
strongly influenced model performance. For ex-
ample, CheXpert, with its NLP-predicted labels,
posed unique challenges for both traditional and
deep learning models due to potential labeling
noise. RSNA posed challenges for the fact that
classes are imbalanced. Chest-X-Ray Images
posed challenges for both the size (only 5,8k im-
ages) and for the class imbalance, thus being
the worst model for cross-dataset generalization.
However, Chest-X-Ray Images was the best per-
forming model in the intra-dataset domain. We
can observe this behavior in Figures [0} [T0] [T T} [12}
[13] and[14] In these figures, the x-axis represents
the dataset used for training, while the y-axis rep-
resents the dataset on which the model was tested.
The matrices display the performance scores for
each model across different training and testing
dataset combinations, allowing for a clear com-
parison of intra- and cross-dataset generalization
capabilities.

6.4 Threshold optimization

In our classification task for pneumonia detec-
tion using X-ray images, we observed that using
a thresholding approach on model outputs, rather
than relying solely on softmax probabilities, sig-
nificantly improved model performance. Specif-
ically, for classifiers that output scores, we calcu-
lated the Receiver Operating Characteristic (ROC)
curve and determined the optimal threshold by
minimizing the Euclidean distance between the
points on the curve and the ideal point (0, 1).
This approach allowed us to fine-tune the decision
threshold, balancing the trade-off between false
positive rate (FPR) and true positive rate (TPR) for
better classification accuracy.

However, this method is not applicable to clas-
sifiers like KNN and Decision Tree, which do not
directly output scores.
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Figure 9: ResNet50
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Figure 12: Logistic Regression
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Figure 13: SVM
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7 Conclusions and Future Work

This study demonstrates the potential of Al-driven
tools for pneumonia detection, highlighting the
strengths and limitations of traditional and deep
learning methods. The findings underscore the im-
portance of considering dataset characteristics and
cross-dataset evaluation to ensure model robust-
ness in diverse clinical settings.
Future research directions include:

* Integration of Multimodal Data: Combin-
ing chest X-ray images with clinical data
(e.g., patient history, symptoms, lab results)
could provide a more comprehensive diag-
nostic approach, improving accuracy and re-
liability.

¢ Addressing Dataset Bias: To tackle bias in
medical images datasets, future work should
explore methods to handle class imbalance,
labelling noise, and image quality varia-
tions. This could include Generative Ad-
versarial Networks (GANs) or Transformer-
based models leveraging attention mecha-
nisms that can help to focus on the most im-
portant parts of the image.

* Model Explainability: While deep learn-
ing models have demonstrated superior per-
formance, their ”black box” nature remains
a concern for clinical applications. Future

work should focus on developing techniques
to improve the explainability of these mod-
els, allowing clinicians to understand why a
particular diagnosis is made.



8 Leveraged Sources

To train the CNNs, we used some code snippets
from here: |https://www.kaggle.com/
code/teyang/pneumonia—-detection-—
resnets—-pytorch
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