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Abstract

Iris recognition has become a corner-
stone of biometric identification systems
due to its unique patterns, stability, and
reliability. This study compares a tra-
ditional iris recognition pipeline, imple-
mented using the OpenIris library, with
a deep learning-based approach employ-
ing a ResNet-50 architecture. The tra-
ditional method utilizes Gabor filters for
feature extraction and Hamming distance
for matching, while the deep learning ap-
proach generates feature embeddings and
evaluates similarity using cosine metrics.
Both approaches were evaluated on the
CASIA-Iris-Thousand dataset under iden-
tical conditions.

1 Introduction

Biometric recognition systems play a critical role
in enhancing security by providing reliable and
unique identification methods. Among various
biometric traits, the iris has emerged as one of the
most promising features for recognition due to its
distinctiveness, stability, and robustness. The in-
tricate patterns of the iris, which are unique to each
individual and remain largely unchanged through-
out a person’s lifetime, make it an ideal candidate
for biometric recognition systems.

The choice of iris as the biometric trait is moti-
vated by several key factors:

• Uniqueness: The texture of the iris contains
complex and highly unique patterns, even
among identical twins. This makes it excep-
tionally reliable for distinguishing between
individuals.

• Stability: Unlike other biometric traits such
as fingerprints or facial features, the iris re-
mains relatively unaffected by age, external
injuries, or environmental conditions.

• High Accuracy: Iris recognition systems
have demonstrated extremely low false ac-
ceptance and rejection rates, making them
suitable for high-security applications.

Potential drawbacks of using the iris as a recog-
nition system include:

• Sensitivity to Lighting Conditions: Captur-
ing high-quality images can be difficult in
poor lighting environments or when factors
such as glasses, contact lenses, or reflections
interfere with the view of the iris.

• Requirement for User Cooperation: The
system relies on users positioning themselves
correctly and keeping their eyes open during
scanning, which may pose challenges for in-
dividuals with disabilities or young children.

• Risk of Spoofing: While uncommon, so-
phisticated spoofing methods such as high-
resolution printed images or specially de-
signed contact lenses replicating iris patterns
could potentially compromise the system.

1.1 Pipeline

1. Segmentation: The first step in the iris
recognition system is segmentation, which
involves isolating the iris region from the
captured eye image while excluding sur-
rounding structures such as the sclera, eye-
lids, eyelashes, and reflections. This is typ-
ically achieved using Daugman’s integro-
differential operator(1), a widely adopted
method in iris recognition. This technique
identifies the circular boundaries of the pupil
and iris by maximizing the integral of pixel
intensity changes along circular contours. By
effectively addressing variations in lighting
and occlusions, this approach ensures accu-
rate localization of the iris region, providing a



reliable foundation for the subsequent stages
of the recognition process.

2. Normalization: To ensure that the extracted
features are consistent and comparable across
varying imaging conditions, we used the
Rubber Sheet Model for normalization. This
model maps the segmented circular iris re-
gion into a fixed, rectangular coordinate sys-
tem. Each point in the iris is transformed
from polar coordinates (r, θ), where r is the
radial distance and θ is the angular coordi-
nate, to Cartesian coordinates in a rectangular
grid. The mapping ensures that the radial and
angular deformations caused by changes in
pupil dilation or viewing angle are corrected.
This process creates a dimensionally invari-
ant representation of the iris, enabling con-
sistent feature extraction.

3. Coding (Feature Extraction): The next
phase involves the extraction of distinctive
features from the normalized iris pattern. For
this task, we used Gabor filters(2), which
are highly effective in capturing spatial fre-
quency and orientation information. Gabor
filters are applied to the normalized iris im-
age to extract texture information by convolv-
ing the image with a series of filter kernels at
multiple scales and orientations. This method
allows for the capture of detailed texture pat-
terns in the iris, which are essential for distin-
guishing between individuals. The resulting
feature map is then encoded into a binary iris
code that uniquely represents the iris texture,
enabling efficient comparison and matching
in the later stages of the recognition process.

4. Matching: In the final phase, the extracted
iris code is compared with pre-stored tem-
plates in a database to verify or identify an
individual. This comparison is performed us-
ing Hamming distance(3), a widely used met-
ric for comparing binary codes. The Ham-
ming distance measures the number of dif-
fering bits between two binary strings. It is
calculated by counting the positions where
the bits in the two iris codes differ. A
lower Hamming distance indicates a closer
match between the two iris patterns, while
a higher distance signifies a mismatch. The
system employs a threshold value to decide

whether a match is found or not, minimiz-
ing both false acceptance and false rejection
rates. The use of Hamming distance provides
a simple yet efficient mechanism for compar-
ing the compact binary iris codes generated
during feature extraction, ensuring fast and
accurate matching.

Figure 1: Standard pipeline

1.2 Our Goal
Our primary goal is to systematically compare
the performance of a traditional approach to
iris recognition against a modern deep learning-
based approach. The traditional pipeline, im-
plemented using the OpenIris library, relies on
well-established techniques such as Gabor filters
for feature extraction and Hamming distance for
matching. In contrast, the deep learning pipeline
leverages a ResNet-50 architecture(4), which is
capable of automatically learning rich and hier-
archical features from iris images, with cosine
similarity as the matching metric. By evaluating
both approaches on the same dataset and under
identical experimental conditions, we aim to high-
light the strengths and limitations of each method.
This comparative analysis will provide valuable
insights into the trade-offs between classical, rule-
based algorithms and data-driven, neural network-
based systems, enabling us to understand their
suitability for various real-world scenarios and ap-
plications.

2 Project Design

In our project we used the OpenIris library for
the traditional machine learning approach, and the
ResNet-50 architecture for the deep learning ap-
proach.



Figure 2: ResNet-50

2.1 OpenIris Library

To implement the pipeline described above, we
utilized the Python library OpenIris (5), an open-
source framework specifically designed for iris
recognition tasks. OpenIris provides a comprehen-
sive set of tools to process eye images efficiently
and accurately, covering all key phases of the
recognition system, including segmentation, nor-
malization, feature extraction, and matching. By
leveraging OpenIris, we ensured that each phase
of the pipeline was implemented with reliable and
well-tested algorithms.

2.1.1 Segmentation with OpenIris
The segmentation is first and most critical step
in the system. It involves isolating the iris re-
gion from the captured eye image by accurately
segmenting the key components of the eye while
excluding noise and occluding structures such as
eyelashes, hair strands, and reflections. For this
step, we employed a novel dual-headed neural
network architecture (6), specifically designed
for high-resolution infrared iris images. The archi-
tecture consists of two decoders working in paral-
lel:

1. Geometry Decoder: Estimates the key ge-
ometric elements of the eye, including the
pupil, iris, and sclera.

2. Noise Decoder: Identifies and processes
noise elements that obscure the iris texture,
such as eyelashes and reflections.

This dual-decoder design allows for the sepa-
rate handling of geometry and noise, significantly
improving the system’s flexibility and efficiency.
By decoupling these tasks, the method ensures ac-
curate segmentation even in cases of overlapping
or occluding elements, which are common chal-
lenges in real-world scenarios. The architecture is
based on the DeepLabv3+ framework with a Mo-
bileNet v2 backbone, a lightweight yet powerful

Figure 3: OpenIris Eye Segmentation

design optimized for high-resolution image seg-
mentation.

2.2 Feature extraction with a ResNet50

This work presents a deep learning approach for
feature extraction in iris recognition, leveraging
a ResNet-50 architecture instead of a traditional
Convolutional Neural Network (CNN). Unlike tra-
ditional feature extraction methods such as Ga-
bor filters, which rely on hand-crafted techniques,
ResNet-50 automatically learns hierarchical and
discriminative features directly from the input
data. This provides a more powerful and flexible
representation, capable of capturing complex pat-
terns and variations in iris textures.

During the feature extraction process, the
ResNet-50 model processes normalized iris im-
ages through its 50 layers, organized into five
blocks of convolutional layers, pooling layers, and
nonlinear activation functions. These layers pro-
gressively extract low-level features, such as edges
and textures, and high-level features that capture
abstract, unique patterns of the iris. The final out-
put of the network is a feature vector of length
2048, where each element is a floating-point value
in the range [−1, 1]. This vector represents a com-
pact and highly discriminative embedding of the
iris pattern, well-suited for efficient matching and
comparison in the later stages.

This approach is inspired by the work in
”ThirdEye: Triplet Based Iris Recognition without
Normalization”(7) by Ahmad and Fuller, which
demonstrated the effectiveness of ResNet-based
architectures for biometric feature extraction.

2.3 Modifications to the ResNet-50 model

The model previously described was pre-trained
for a classification task using a softmax loss func-
tion. To adapt the ResNet-50 architecture to our
specific task, three modifications were required.

The first modification involves replacing the ini-



tial convolutional layer, altering the number of in-
put channels from 3(RGB) to 1. This change is
necessary because the images in the dataset used
for both training and testing are in grayscale, as
they were captured by an infrared sensor. The sec-
ond modification consists of removing the softmax
function, as it is not pertinent to the objectives of
our task. The final modification is an addition,
which introduces output normalization in L2[1]
form.

∥x∥2 =

√√√√ n∑
i=1

x2i (1)

2.4 Tripet Loss Function

In order to ensure that the model generates highly
similar embeddings for images belonging to the
same class, it was necessary to define a new loss
function for the training phase, referred to as
Triple Loss(8). This function takes three inputs:
anchor, positive, and negative. The ”anchor” rep-
resents the result obtained by passing an image of
a user to the model. The ”positive” parameter cor-
responds to the result generated by the model us-
ing an image of the same user as the anchor. Fi-
nally, the ”negative” parameter represents the re-
sult obtained from the model using an image of a
different user as input. With these three parame-
ters, the loss is computed using cosine distance,
with a margin of 0.4. This approach enables the
model to more effectively learn how to generate
embeddings, thereby improving its ability to dis-
tinguish between subjects.

The Triplet Loss with cosine distance can be ex-
pressed as:

Ltriplet = max (0, d(a,p)− d(a,n) + α)

where:

• a is the anchor,

• p is the positive sample (same class as the
anchor),

• n is the negative sample (different class from
the anchor),

• d(x,y) is the cosine distance between two
vectors x and y, defined as:

d(x,y) = 1− x · y
∥x∥2∥y∥2

• α is the margin ensuring the distance between
the anchor and negative is sufficiently larger
than the distance between the anchor and pos-
itive.

2.5 Training
In order to adapt the ResNet architecture to our
dataset, two models were trained, each for 30
epochs. The first model was trained using images
that encompassed the entire eye, while the second
model was trained on images containing the nor-
malized iris, computed using the OpenIris library.
The Adam optimizer was employed for training,
with a learning rate set to 1e-3.

2.6 Matching Phase with ResNet-50 Features
For the matching phase, we use the cosine simi-
larity as metric. Cosine similarity measures the
angular difference between two feature vectors in
a high-dimensional space, making it invariant to
scale and robust to variations in intensity or con-
trast.

To facilitate the comparison between the results
obtained by the models and those derived using
the Hamming distance, modifications were made
to the results produced by the cosine similarity
measure. The first modification involves invert-
ing the output of the cosine similarity function so
that vectors belonging to the same class yield re-
sults closer to -1. The second modification in-
volves normalizing the resulting values to the in-
terval [0,1].

3 Dataset

To evaluate the performance of the iris recog-
nition pipeline, we utilized the CASIA-Iris-
Thousand dataset(9), a widely recognized bench-
mark dataset in the field of biometric research.
This dataset consists of 20,000 high-resolution
images of irises captured under controlled con-
ditions, representing a diverse range of individu-
als and variations in iris patterns. Our evaluation
aims to compare the performance of the ResNet-
50 models trained on this dataset with the tradi-
tional method implemented using the OpenIris li-
brary. We evaluate two models: one ResNet-50
trained on a dataset of centered eye images and
another ResNet-50 trained on a normalized iris
dataset. To achieve this, we created three distinct
datasets tailored to different stages of the evalu-
ation. The dataset was split into three subsets to
ensure a structured and fair evaluation:



• 70% for training: This portion was used
to train the ResNet-50 model, allowing it to
learn patterns and features from the iris im-
ages.

• 10% for validation: This subset was used
during the training process to monitor the
model’s performance, tune hyperparameters,
and prevent overfitting.

• 20% for testing: These images were held out
during training and used exclusively to eval-
uate the final performance of the model, en-
suring that no data leakage occurred.

The splitting process was performed at the individ-
ual level to ensure that no samples from the same
individual were present in more than one subset.
This approach guarantees that the model’s perfor-
mance is evaluated on unseen identities, providing
a realistic measure of its generalization capabili-
ties.

3.1 Segmented Iris Dataset

In the first step, we processed the original im-
ages using the OpenIris library to identify and seg-
ment the iris region. Of the 20,000 images in
the CASIA-Iris-Thousand dataset, 18,725 images
were successfully segmented, approximately 93%
of the images.

This segmented dataset retains the original cir-
cular iris format and serves as input for the subse-
quent normalisation and feature extraction steps.
Images that failed segmentation were excluded
from further processing, ensuring a clean and reli-
able dataset.

3.2 Normalized Iris Dataset

From the segmented dataset, we applied the Rub-
ber Sheet Model to normalise the regions of the
iris. This normalisation step transformed the cir-
cular regions of the iris into a fixed, rectangular
representation by mapping the iris from polar co-
ordinates to Cartesian coordinates. This transfor-
mation compensates for variations caused by pupil
dilation, changes in viewing angles and other dis-
tortions, ensuring that all irises have a consistent
format.

The resulting dataset consists of rectangular
representations of 18,725 normalised irises, uni-
form in size and orientation. This dataset is the in-
put for feature extraction, providing a dimension-

ally invariant representation that allows for the ex-
traction of discriminating features.

3.3 Feature Vector Dataset
In the final stage, we extracted features from the
normalized iris dataset using Gabor filters.

These feature maps were then processed to pro-
duce feature vectors, compact numerical represen-
tations of the iris patterns. Each feature vector
contains critical information required for distin-
guishing between irises and serves as the input
for the matching phase. The final feature vec-
tor dataset is composed of 18,725 feature vectors,
one for each iris, ensuring compatibility with the
matching algorithms such as the Hamming dis-
tance.

4 Evaluation

Our goal is to clearly define the two primary eval-
uation tasks:

1. Verification: Assess the ability of the sys-
tem to verify a user’s identity based on an iris
sample and a claimed identity.

2. Identification: Evaluate the system’s capa-
bility to identify a user from a set of known
individuals (closed-set identification) or de-
termine if the user is unknown (open-set
identification).

4.1 Test dataset
To evaluate the performance of the deep learn-
ing models and the traditional iris recognition
pipeline, we utilized 20% of the total dataset,
which corresponded to 400 unique identities. Each
identity is represented by around 8 samples. These
400 identities were further split into two subsets
for the evaluation: 60% were designated as the
gallery set, and 40% as the probe set.

4.2 Evaluation metrics
These are the key metrics used for our evaluation

1. False Acceptance Rate (FAR): Percentage
of impostor attempts that are falsely ac-
cepted. (Indicates system vulnerability to
unauthorized access.)

2. False Rejection Rate (FRR): Percentage of
genuine attempts that are falsely rejected.
(Indicates how often legitimate users are de-
nied access.)



3. Equal Error Rate (EER): The point where
FAR and FRR are equal. A lower EER indi-
cates better performance.

4. Genuine Rejection Rate (GRR): This is the
rate of impostors whose identity is correctly
rejected (1 - FAR)

5. Receiver Operating Characteristic (ROC)
Curve: Plots Genuine Acceptance Rate
(GAR = 1 - FRR) against FAR. An ideal sys-
tem has a curve that approaches the top-left
corner.

6. Detection and Identification Rate at Rank-
1 (DIR@1): Measures the probability of cor-
rectly identifying the user at the top of the
ranked matches.

4.3 Verification
For the verification task we generated multiple
templates per individual in the test dataset and than
for each template:

• Perform genuine verification by comparing
it to other templates of the same individual.

• Perform impostor verification by comparing
it to templates of all other individuals.

4.3.1 Open Iris Library

Figure 4: Verification All vs All

Figure 5: Verification Probe vs Gallery

These graphs illustrate the verification perfor-
mance across different scenarios, including com-
parisons between probe and gallery samples as
well as broader all-vs-all evaluations. It plots key
metrics such as the False Acceptance Rate (FAR),
False Rejection Rate (FRR), Genuine Recognition
Rate (GRR), and Equal Error Rate (EER) against
varying thresholds. The graph highlights critical
points like ZeroFAR and ZeroFRR, which indicate
the thresholds where FAR and FRR are minimized
or reach zero, providing valuable insights into the
system’s performance.



4.3.2 Resnet-50 with full eye images

Figure 6: Verification All vs All

Figure 7: Verification Probe vs Gallery

These graphs present a detailed evaluation of the
full-eye ResNet model’s verification performance
in both ”All vs All” and ”Probe vs Gallery” sce-
narios. It plots the False Rejection Rate (FRR)
against varying thresholds, highlighting key points
where the False Acceptance Rate (FAR) and FRR
are minimized to zero. Additionally, the graph
marks the Equal Error Rate (EER) at 0.01, show-
casing the model’s high accuracy and effectiveness
in these scenarios.

4.3.3 Resnet-50 with normalized eye images

Figure 8: Verification All vs All

Figure 9: Verification Probe vs Gallery

These graphs provide a comprehensive evalua-
tion of the normalized ResNet model’s verifica-
tion performance in both ”All vs All” and ”Probe
vs Gallery” scenarios. It plots the False Rejection
Rate (FRR) against varying thresholds, with key
points labeled as ZeroFAR and ZeroFRR, mark-
ing thresholds where the False Acceptance Rate
(FAR) and FRR are minimized to zero. The Equal
Error Rate (EER) is recorded at 0.01, highlight-
ing the model’s high accuracy. This analysis aids
in identifying the optimal threshold for balancing
false acceptances and rejections, ensuring robust
performance in diverse verification tasks.



4.4 Verification results

Method EER t@EER
Open-Iris ∼ 0% 0.41

Full ResNet 1% 0.125
Norm. ResNet 1% 0.125

Table 1: Verification All vs all

Method EER t@EER
Open-Iris ∼ 0% 0.41

Full ResNet 1% 0.145
Norm. ResNet 1% 0.145

Table 2: Verification Probe vs Gallery

4.5 Identification
For the identification task, a gallery of known in-
dividuals and a set of probe samples are used, and
for each probe, the following steps are taken:

• Match it against all templates in the gallery.

• If the probe belongs to a known individ-
ual, ensure the correct identity is ranked first
(DIR@1).

• If the probe is from an unknown individual,
check if the system correctly rejects it as ”un-
known”.

4.5.1 Open Iris Library

Figure 10: Identification All vs All

Figure 11: Identification Probe vs Gallery

These graphspresent the identification perfor-
mance of the system in both ”All vs All” and
”Probe vs Gallery” scenarios. It plots key metrics,
including the False Acceptance Rate (FAR), False
Rejection Rate (FRR), Rank-1, Genuine Recog-
nition Rate (GRR), and Equal Error Rate (EER),
against varying thresholds. Critical points such as
ZeroFAR and ZeroFRR are highlighted, marking
thresholds where FAR and FRR are minimized or
reach zero, providing insights into the system’s ef-
fectiveness in different identification tasks.



4.5.2 Resnet-50 with full eye images

Figure 12: Identification All vs All

Figure 13: Identification Probe vs Gallery

Figure 14: Identification ROC All vs All

Figure 15: Identification ROC Probe vs Galley

This analysis evaluates the identification perfor-
mance of the system across both All vs. All and
Probe vs. Gallery configurations. The All vs.
All setup achieves an Equal Error Rate (EER) of
0.05 and a Rank-1 accuracy of 95.92%, demon-
strating excellent reliability and low error rates.
In comparison, the Probe vs. Gallery configura-
tion yields an EER of 0.06 and a Rank-1 accu-
racy of 93.45%, reflecting slightly lower but still
strong performance. The accompanying Receiver
Operating Characteristic(ROC) curves further as-
sess the model’s discriminative ability. The All
vs. All ROC curve, with an Area Under the Curve
(AUC) of 0.98, highlights superior performance,
while the Probe vs. Gallery ROC curve achieves
an AUC of 0.97, demonstrating robust identifica-
tion capabilities in distinguishing between match-
ing and non-matching pairs. The steepness of the
curves and their proximity to the top-left corner
emphasize the model’s high effectiveness in both
scenarios.



4.5.3 Resnet-50 with normalized eye images

Figure 16: Identification All vs All

Figure 17: Identification Probe vs Gallery

Figure 18: Identification ROC All vs All

Figure 19: Identification ROC Probe vs Gallery

This analysis examines the identification perfor-
mance of the normalized ResNet model in both
”All vs All” and ”Probe vs Gallery” scenarios. In
the ”All vs All” configuration, the graph plots the
False Acceptance Rate (FAR) and False Rejection
Rate (FRR) against varying thresholds, with key
points such as ZeroFAR highlighting thresholds
where FAR is minimized to zero. The accom-
panying Receiver Operating Characteristic (ROC)
curve demonstrates the model’s ability to dis-
tinguish between positive and negative samples,
achieving an Area Under the Curve (AUC) of 0.96,
indicative of excellent performance.

In the ”Probe vs Gallery” scenario, the graph
extends the analysis by including FAR, FRR, and
additional metrics. It highlights critical points
such as ZeroFAR and the Equal Error Rate (EER)
of 0.10. The Rank-1 Error Rate (ERR) is noted
as 0.9028, showcasing high accuracy. The corre-
sponding ROC curve, with an AUC of 0.94, fur-
ther underscores the model’s strong discriminative
ability in this context, effectively distinguishing
between probe and gallery samples. These evalua-
tions collectively emphasize the robust identifica-
tion capabilities of the normalized ResNet model
across diverse scenarios.



4.6 Identification results

Method EER t@EER DIR@1 AUC
Open-Iris ∼ 0% 0.375 99.7% -
F. ResNet 5% 0.06 95.92% 98%
N. ResNet 8% 0.05 91.38% 96%

Table 3: Identification All vs All

Method EER t@EER DIR@1 AUC
Open-Iris ∼ 0% 0.375 99.8% -
F. ResNet 6% 0.060 93.39% 97%
N. ResNet 10% 0.060 90.21% 94%

Table 4: Identification Probe vs Gallery

4.7 OpenIris Results Analysis
Using the OpenIris library for iris recognition,
normalization, feature extraction, and matching on
the CASIA-Iris-Thousand dataset, we achieved re-
sults that align closely with those reported by the
authors of the library. Specifically, the Equal Error
Rate (EER) threshold obtained during our evalua-
tion was 0.375, which is remarkably close to the
optimal threshold of 0.37 stated in the library’s
documentation. This consistency highlights the re-
liability and robustness of the OpenIris framework
for iris recognition tasks.

The exceptional performance of OpenIris can
be attributed to its specialized design and opti-
mization specifically for iris recognition. Un-
like general-purpose architectures such as ResNet,
OpenIris employs domain-specific techniques that
are finely tuned to handle the unique challenges of
iris recognition. These include:

• Advanced Preprocessing: OpenIris applies
sophisticated preprocessing techniques that
effectively remove noise, reflections, and oc-
clusions, while normalizing the iris region to
a consistent scale. This ensures that the input
images are of high quality, providing a strong
foundation for accurate recognition.

• Tailored Feature Extraction: The library
uses feature extraction methods specifically
designed to capture the intricate radial and
textural patterns of the iris. These features
are critical for distinguishing between indi-
viduals, as they minimize intra-class variabil-
ity and enhance inter-class separability.

• Optimal Threshold Calibration: OpenIris
incorporates well-calibrated decision thresh-
olds that maximize the separability between
genuine and impostor matches. This is
evident from its low EER threshold of
0.375, reflecting the library’s ability to con-
fidently distinguish between matching and
non-matching iris pairs.

4.8 Comparative Analysis
The comparative analysis highlights the perfor-
mance of Open-Iris, Full ResNet, and Normal-
ized ResNet across verification and identification
tasks. It exhibits a higher threshold at EER of
0.41, indicating stronger confidence in decision
thresholds compared to Full ResNet and Normal-
ized ResNet, which both achieve an EER of 1%
and have lower threshold at EER values of 0.125
and 0.145, respectively. Full ResNet and Normal-
ized ResNet demonstrate identical EER values but
differ slightly in threshold at EER between scenar-
ios, with both methods trailing behind Open-Iris in
terms of overall performance.

In the identification results, Open-Iris also
emerges as the superior method, achieving∼ 0%
EER in both the ”All vs All” and ”Probe vs
Gallery” scenarios. It achieves near-perfect iden-
tification rates with DIR@1 values of 99.7%
and 99.8%, respectively, and maintains a strong
threshold at EER (t@EER) of 0.375 in both cases.
Full ResNet performs reasonably well, with EER
values of 5% and 6%, DIR@1 values of 95.92%
and 93.39%, and AUC values of 98% and 97% for
”All vs All” and ”Probe vs Gallery,” respectively.
However, its performance is noticeably weaker
compared to Open-Iris. Normalized ResNet shows
further performance degradation, with EER values
of 8% and 10%, DIR@1 values of 91.38% and
90.21%, and AUC values of 96% and 94% across
the two scenarios.

Overall, Open-Iris demonstrates the most robust
and consistent performance across both verifica-
tion and identification tasks, significantly outper-
forming the ResNet-based methods. While Full
ResNet performs better than Normalized ResNet,
both methods are less effective than Open-Iris,
with higher error rates, lower recognition rates,
and weaker thresholds.

5 Conclusion

This paper compares the traditional and deep
learning-based approaches for iris recognition,



considering the segmentation, normalization, fea-
ture extraction, and matching stages. The classic
pipeline implemented using the OpenIris library
outperformed most of them, especially in terms
of Equal Error Rate (EER) and Rank-1 accu-
racy. This underlines the reliability and strength
of the classical methods, which are based on well-
established techniques for feature extraction using
Gabor filters and Hamming distances for match-
ing. In this respect, these methods tend to do very
well under controlled conditions with good light-
ing and cooperation of the users.

On the other hand, deep learning was done with
ResNet-50 architecture and appeared more ver-
satile against complex patterns in iris variations.
Specifically, the ResNet-50 model returned com-
petitive results when trained with normalized iris
images: 1% EER in verification tasks and 91.38%
Rank-1 accuracy in identification tasks. The effec-
tive ability to handle such challenging scenarios
was provided to the deep learning model through
automatic learning of hierarchical features from
the data.

The identification task performed a bit worse
by the deep learning model, especially within the
”Probe vs Gallery” scenario where the EER is
taken to 10%. This, therefore, might illustrate the
fact that even though the deep learning methods
are powerful, it could require further optimizations
to match, in some contexts, the traditional meth-
ods’ accuracy.

The results also pointed out how segmentation
accuracy influences the overall performance of the
iris recognition system. This was achieved using
the dual-headed neural network architecture for
segmentation in the OpenIris library, which was
able to successfully segment the iris region from
high-resolution infrared images with a success rate
of 93%. This is very important because mistakes
made in the segmentation step would have prop-
agated through to the next steps and hence gave
poor results in feature extraction and matching.

5.1 Future Improvements

While traditional and deep learning techniques
showed excellent results, there are some points
at which improvements might be made in future
work to enhance the effectiveness of iris recogni-
tion systems.

1. Improved Segmentation Methods: The
current segmentation method, while very ef-

fective, can be further improved by utilizing
the latest neural network architectures, such
as transformer-based models or attention
mechanisms, that will improve the accuracy
of iris localization in challenging conditions,
such as occlusions or poor lighting.

2. Hybrid Approaches: Combining traditional
and deep learning methods may result in a
stronger model. The two approaches can
combine their strengths, where classic feature
extraction could be represented, for example,
by Gabor filters, together with deep learning
topologies, leading to an enhancement con-
cerning the extracted discriminative charac-
teristics of the representations.

3. Larger and More Diverse Datasets: Train-
ing deep learning models on larger and more
diverse datasets, including images captured
under varying lighting conditions, with dif-
ferent types of occlusions, and from a wider
range of ethnicities, could improve the gen-
eralization capabilities of the models. This
would make the system more reliable in real-
world applications.

4. Real-Time Processing: The deep learn-
ing models should be optimized for real-
time processing, which could be achieved by
quantization or pruning of the models to pre-
pare them for real-world deployment in secu-
rity systems where low latency is important.

5. Spoofing Detection: Future work could be
addressed to make the system more robust
against spoofing, employing, for example,
high-resolution printed images or artificial
contact lenses. Anti-spoofing techniques in-
tegrated into the recognition pipeline would
increase the security of the systems even
more.

6. User Experience: The user experience for
people of varying abilities or small children
may lie in developing even friendlier inter-
faces or ways of capturing an iris without
needing users to precisely comply.

From both, again traditional methods are strengths
but also limited as those based on deep learning,
the future is toward incorporating methods for seg-
mentation and extraction along with continuous



anti-spoofing improvements. Therefore, address-
ing all these challenges leads to iris recognition
systems that could get even more reliable, secure,
and adaptable to almost any real-world setup or
application.

5.2 Demo
The demo is a simple identification system built
using PyQt5, which integrates the implementa-
tions of both the OpenIris library and the ResNet-
50 models for iris recognition. The system is de-
signed to register and identify users based on their
iris patterns. A database was created to store user
information, including a table for users and a re-
lated table that stores the iris embeddings for each
model (OpenIris and ResNet-50). Each user can
register multiple eye images, capturing different
positions or angles, to ensure robustness during
identification.

The application allows new users to register
through a form where they provide their name and
upload an eye image. During the identification
process, the user submits another eye image, and
the system generates the corresponding embed-
dings for that image. These embeddings are then
compared with those stored in the database using
Hamming distance for OpenIris embeddings and
cosine similarity for ResNet-50 embeddings. The
system produces a list of distances, ordered from
the lowest (most likely match) to the highest (least
likely match). To ensure balanced performance,
the Equal Error Rate (EER) values were used
as thresholds for determining whether a match is
valid. This approach ensures a fair trade-off be-
tween false acceptances and false rejections, pro-
viding a reliable and user-friendly identification
system.
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